РУКОВОДСТВО по эксплуатации электронных приборов **XR10C**

ОГЛАВЛЕНИЕ

- 1. ОБЩЕЕ ПРЕДУПРЕЖДЕНИЕ
- 2. ОБЩЕЕ ОПИСАНИЕ
- 3. УПРАВЛЯЮЩИЕ УСТАНОВКИ
- 4. КОМАНДЫ ПЕРЕДНЕЙ ПАНЕЛИ
- 5. СПИСОК ПАРАМЕТРОВ
- 6. УСТАНОВКА И МОНТАЖ
- 7. ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ
- 8. СИГНАЛЫ ТРЕВОГИ
- 9. ТЕХНИЧЕСКИЕ ДАННЫЕ
- 10. СХЕМЫ ПОДКЛЮЧЕНИЯ
- 11. СТАНДАРТНЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

1. ОБЩЕЕ ПРЕДУПРЕЖДЕНИЕ

1.1. Пожалуйста, прочитайте это Руководство до начала эксплуатации!

Это руководство является частью продукта и должно храниться рядом с прибором для легкого и быстрого доступа.

Этот прибор не может быть использован иначе, чем это описано ниже. Он не может быть использован как секретное устройство.

Проверьте пределы применения перед использованием.

1.2. Меры предосторожности

Проверьте правильность питающего напряжения перед подключением прибора.

Не подвергайте его воздействию воды или повышенной влажности: используйте прибор только в заданных пределах температур, избегая резких перепадов температур при высокой атмосферной влажности во избежание образования конденсата.

Внимание: разомкните все электрические соединения перед ремонтом любого типа.

Прибор не должен быть открытым.

.

Обсудите максимальный ток, который может проходить через каждое реле (см. Технические данные).

Убедитесь, что провода датчиков, прибора и питающего напряжения разделены и удалены друг от друга без пересечений и скруток.

В случае применения в критическом промышленном окружении, используйте фильтры (наша модель FT1) параллельно индуктивной нагрузке.

2. ОБЩЕЕ ОПИСАНИЕ

Модель **XR10C**, с панелью размерами 32 × 74 мм, является одноступенчатым температурным контроллером, предназначенным для использования при охлаждении или обогреве.

3. УПРАВЛЯЮЩИЕ УСТАНОВКИ

3.1. Регулирующие выходы

Регулировка производится в соответствии с измерениями температуры датчиком термостата. Прибор поставляется с программируемым параметром **СН**, который позволяет использовать прибор как для охлаждения, так и для обогрева:

CH = CL - для охлаждения

CH = Ht - для обогрева.

3.2. Охлаждение (CH = CL)

Дифференциал (гистерезис) Ну всегда имеет положительное значение и автоматически прибавляется к значению контрольной точки. Если температура повысилась и достигла значения контрольной точки плюс дифференциал, то включается компрессор и он будет работать до тех пор, пока температура опять не опуститься до значения контрольной точки.

3.3. Обогрев (CH = Ht)

Дифференциал (гистерезис) Ну всегда имеет положительное значение и автоматически вычитается из значения контрольной точки. Если температура понизилась и достигла значения контрольной точки минус дифференциал, то регулируемый выход включается и он будет под напряжением до тех пор, пока температура опять не поднимется до значения контрольной точки.

4. КОМАНДЫ ПЕРЕДНЕЙ ПАНЕЛИ

SET Выводит значение контрольной точки.

В режиме программирования - выбор параметра или подтверждение операции.

Больше Просмотр максимальной записанной температуры.

В режиме программирования - просмотр меток параметров или увеличение значения выведенного на дисплей параметра.

Меньше Просмотр минимальной записанной температуры.

В режиме программирования - просмотр меток параметров или уменьшение значения выведенного на дисплей параметра.

Комбинации кнопок:

▲+▼ Блокирование и разблокирование кнопок

SET+ ▲ Вход в режим программирования

SET+ ★ Возврат к показу температуры в камере.

4.1. Использование индикаторов

Прибор имеет два индикатора в виде точек слева сверху у первой цифры (индикатор 1) и у третьей цифры (индикатор 2 - "снежинка"). Все функции индикаторов описаны в таблице:

Индикатор	Состояние	Функция	
2	горит	Включен компрессор	
2	мигает	- Фаза программирования (мигает вместе с индикатором 1)	
		- Включена задержка запуска компрессора	
1	мигает	Фаза программирования (мигает вместе с индикатором 2)	

4.2. Как увидеть минимальную температуру

- 1. Нажать и отпустить кнопку "Меньше".
- 2. На дисплее появится сообщение "**Lo**" и затем значение минимальной из записанных прибором температур.
- 3. После повторного нажатия кнопки "Меньше" или через 5 сек, прибор вернется в обычному режиму.

4.3. Как увидеть максимальную температуру

- 1. Нажать и отпустить кнопку "Больше".
- 2. На дисплее появится сообщение "**Hi**" и затем значение максимальной из записанных прибором температур.
- 3. После повторного нажатия кнопки "Больше" или через 5 сек, прибор вернется в обычному режиму.

4.4. Как обновить записи минимальной и максимальной температур

- 1. Для обновления записи температур войдите в режим программирования, нажав кнопки "Меньше" и "SET" на 3 сек.
- 2. Выберите параметр rST.
- 3. Нажмите кнопку "SET".

4.5. Как увидеть контрольную точку

- 1. Нажать и немедленно отпустить кнопку "SET"; на дисплее будет показано значение контрольной точки.
- 2. Нажать и немедленно отпустить кнопку "SET" или подождать 5 сек и прибор вернется к выдаче показаний датчика температуры в камере.

4.6. Как изменить значение контрольной точки

- 1. Для изменения значения контрольной точки следует нажать кнопку "SET" не менее чем на 2 сек.
- 2. На дисплей будет выведено текущее значение контрольной точки и начнет мигать индикатор 2 ("снежинка").
- 3. С помощью кнопок "Больше" или "Меньше" измените значение контрольной точки, не делая перерывов между нажатиями более 10 сек.
- 4. Для запоминания нового значения контрольной точки опять нажмите кнопку "SET" или подождите 10 сек.

4.7. Изменение значений параметров

Для изменения значений параметров действуйте следующим образом:

- 1. Для входа в режим программирования следует нажать кнопки "SET" и "Больше" не менее чем на 3 сек. Начнут мигать оба индикатора.
- 2. Выберите требуемый параметр.
- 3. Нажмите кнопку "SET" для вывода значения параметра. Теперь будет мигать только индикатор 2 "снежинка".
- 4. С помощью кнопок "Больше" или "Меньше" измените значение параметра, не делая перерывов между нажатиями более 15 сек.
- 5. Нажмите кнопку "SET" для запоминания нового значения и переходу к следующему параметру.

Выход: Нажать кнопки "SET" и "Больше" или подождать 15 сек не нажимая никаких кнопок.

Замечание: Значение параметра будет запомнено даже если выход из режима программирования произошел по превышению времени ожидания.

4.8. Как заблокировать кнопки

- 1. Держите нажатыми кнопки "Больше" и "Меньше" не менее 3 сек.
- 2. На дисплее появится сообщение "РОГ" и кнопки станут заблокированными. В таком состоянии можно только посмотреть значение контрольной точки и максимальное и минимальное значения записанной температуры.
- 3. Если какая-либо кнопка нажата более 3 сек, то на дисплей выводится сообщение "РОГ".

4.9. Как разблокировать кнопки

Держите одновременно нажатыми кнопки "Больше" и "Меньше" не менее 3 сек.

5. СПИСОК ПАРАМЕТРОВ

Управление

Ну Дифференциал: $(0,1 \dots 25,5^{\circ}C, \text{ точность } 1^{\circ}C \text{ или } 0,1^{\circ}C)$. Всегда положителен.

Охлаждение: Компрессор включается, когда температура превысит значение контрольной точки (SP) плюс дифференциал (Hy). Компрессор отключится, когда температура достигнет контрольной точки.

Обогрев: Нагрузка включается, когда температура достигает значения контрольной точки (SP) минус дифференциал (Hy). Нагрузка отключится, когда температура достигнет контрольной точки.

- **LS** Минимум контрольной точки: (–50°C ... SP). Минимально возможное значение контрольной точки.
- **US** Максимум контрольной точки: (SP ... +150°C). Максимально возможное значение контрольной точки.
- **Оt Калибровка датчика**: (-12...+12°C, точность 0,1°C) возможность установить поправку показаний датчика термостата.
- **АС** Задержка запуска (0...50 мин): минимальный интервал между остановкой компрессора и последующим запуском.
- **COn Время работы компрессора с неисправным датчиком**: (0...255 мин) время в течение которого компрессор включен в случае поломки датчик термостата. При COn = 0 компрессор все время отключен.
- **СОF** Время стоянки компрессора с неисправным датчиком: (0...255 мин) время в течение которого компрессор отключен в случае поломки датчик термостата. При СОF = 0 компрессор все время включен.
- **СН** Область применения CL охлаждение, Ht нагревание.

Точность

- **СF** Единицы измерения температуры: 0 = шкала Цельсия, 1 = шкала Фаренгейта.
- **rES** Точность (в °C) (in = 1°C, de = 0,1°C) Возможность вывода десятичной точки.

Тревога

- **ALU Тревога по максимальной температуре**: (ALL ... +50°C) когда достигается эта температура, то, после задержки на время ALd, включается тревога.
- **ALL Тревога по минимальной температуре**: (–50°C ... ALU) когда достигается эта температура, то, после задержки на время ALd, включается тревога.
- **ALd** Задержка температурной тревоги: (0...255 мин) интервал времени между обнаружением условий тревоги и сигнализацией тревоги.
- **dAO** Задержка температурной тревоги при запуске: (0 ... 23ч50м) интервал времени между определением условий тревоги по температуре после включения прибора и сигнализацией тревоги.

Другое

РЬС Выбор типа датчика Рtc = датчик типа РТС, ntc = датчик типа NTC.

rSt Обновление записей максимальной и минимальной температуры

6. УСТАНОВКА И МОНТАЖ

Прибор **XR10C** монтируется на панели в отверстии 29×71 мм и закрепляются сзади специальными прилагаемыми скобами.

Окружающая температура для нормальной работы должна быть 0...+60°C. Избегайте мест подверженных сильной вибрации, едким газам, загрязнению или влажности. Такие же рекомендации и для датчиков. Пусть воздух проходит через отверстия в корпусе.

7. ЭЛЕКТРИЧЕСКИЕ СОЕДИНЕНИЯ

Приборы поставляются с соединительной колодкой на винтах для подключения кабелей с сечением проводов до 2,5 мм². Перед подключением кабеля убедитесь, что подаваемое напряжение соответствует указанному на приборе. Отделите провода датчика от питающего

кабеля, выходных и силовых контактов. Не превышайте максимальный ток на каждом реле, в случае большей нагрузки используйте соответствующие внешние реле.

7.1. Соединения датчика

Датчики следует монтировать колбой вверх, чтобы избежать повреждений в случае попадания жидкости внутрь. Рекомендуется располагать датчик термостата не на воздушной струе для корректных измерений средней температуры в камере.

8. СИГНАЛЫ ТРЕВОГИ

Сообщение	Причина	Выходы			
"EE"	Ошибка данных в памяти				
"P1"	Поломка датчика температуры	Компрессор включается согласно параметрам "COn" и "COF"			
"HA"	Тревога по максимальной температуре	Без изменения			
"LA"	Тревога по минимальной температуре	Без изменения			

8.1. Длительность сигналов тревоги

Сообщение о тревоге выводится пока не будет нажата какая-либо кнопка. Сообщения о тревогах по температуре "НА" и "LA" мигают попеременно с температурой в камере. Если поврежден датчик температуры, то сообщение "Р1" будет мигать до устранения его поломки.

8.2. Тревога "EE"

Прибор поставляется с внутренней проверкой данных и состояния памяти. Тревога "ЕЕ" появляется когда обнаружена ошибка в данных или во внутренней памяти. В этом случае следует обратиться в службу сервиса.

8.3. Возобновление тревоги

Тревога по датчику "**P1**" начинается через несколько секунд после обнаружения неисправности соответствующего датчика; она автоматически прекращается через несколько секунд после возобновления нормальной работы датчика. Проверьте соединения перед заменой датчика.

Сообщения тревоги "**HA**" и "**LA**" автоматически прекращаются при возвращении температуры к нормальным значениям или при начале оттайки.

9. ТЕХНИЧЕСКИЕ ДАННЫЕ

Корпус: пластик ABS

Êîðïóñ: передняя панель 74×32 мм, глубина 60 мм **Монтаж:** монтаж на панели в отверстии 71×29 мм

Защита панели: по нормам IP65

Соединения: Колодка контактов на винтах для проводов не более 2,5 мм²

Напряжение питания: 12 В пост/перем тока, $\pm 10\%$

(по заказу 230 В, 110 В переменного тока, $\pm 10\%$, 50/60 Гц)

Потребление энергии: максимально 3 Вт

Дисплей: 3 цифры, красные индикаторы, высота 14,2 мм

Входы: 1 датчик типа РТС или NTC

Реле выхода на компрессор: реле типа SPDT на 8(3) A, 250 В или

реле типа SPST на 20(8) A, 250 B

Хранение данных: в энергонезависимой памяти (типа EEPROM)

Рабочие температуры: 0°С ... +60°С

Относительная влажность: 30...85% (без конденсации)

Температура хранения: -30°C ... +85°C

Измеряемый и регулируемый диапазон: датчик типа РТС: –50°С ... +150°С

датчик типа NTC: -40°C ... +110°C

Точность показаний: 0,1°C или 1°C или 1°F (выбирается)

Точность прибора при +25°С: ± 0.7 °С ± 1 знак

10. СХЕМЫ ПОДКЛЮЧЕНИЯ

Схема подключения прибора XR10C с источником питания 12 В (пост./перем. тока) и управляющим реле с максимально допустимым током 8A:

Схема подключения прибора XR10C с источником питания 12 В (пост./перем. тока) и управляющим реле с максимально допустимым током 20A:

11. ЗНАЧЕНИЯ ПАРАМЕТРОВ СТАНДАРТНОЙ МОДЕЛИ XR10C

Код	Содержание	Единица	Диапазон	Охлаждение	Обогрев
SEt	Контрольная точка (Set Point)	градус	LSSU	5	5
HY	Дифференциал (гистерезис)	градус	150	2	2
LS	Минимум контрольной точки	градус	-60SEt	-50	-50
US	Максимум контрольной точки	градус	SEt 50	150	150
Ot	Калибровка датчика в êàìåpe	градус	-1212	0	0
OdS	Задержка включения при запуске	МИН	0255	0	0
AC	Задержка запуска	МИН	030	1	0
COn	Работа компрессора без датчика	МИН	0120	30	0
COF	Стоянка компрессора без датчика	МИН	0120	30	5
CH	Область применения		CL, Ht	CL	Ht
CF	Температурная шкала		°C, °F	C	C
rES	Точность		in, dE	dE	dE
ALC	Отсчет темперетуры (от SEt, от 0)		rE, Ab	Ab	Ab
ALU	Тревога: высокая температура	градус	ALL150	150	150
ALL	Тревога: низкая температура	градус	-60ALU	-50	-50
ALd	Задержка тревоги	МИН	0255	15	5
dAO	Задержка тревоги при запуске	МИН	023÷50ì	1.0	30
PbC	Тип датчика температуры		Ptc, ntc	Ptc	Ptc
rSt	Обновление записей температуры				